Activity-Induced Manganese Dependent Contrast
MRIを用いた薬刺激によるラット脳賦活の検討

青木伊知男
明治薬学大学 大学院 *薬学臨床医学 *脳神経外科学教室

要旨 従来の磁気共鳴画像法による脳機能画像は高い空間分解能を有するものの、微弱な体性感覚刺激における研究においては測定感度に問題があり、また小血管を中心に描出される特徴を有するため、賦活部位と信号領域にずれが生じる可能性があった。今回我々は、最近報告された、脳血流に依存せず局所の脳賦活を観察するActivity-Induced Manganese Dependent Contrast 磁気共鳴画像法（AIM MRI）法を用いて、ラット左前肢における、1）薬（対照）、2）薬通電刺激、3）薬による薬刺激、4）薬通電刺激、5）薬による薬刺激、6）薬通電刺激、7）薬による薬刺激、8）薬通電刺激と共に有意な信号上昇を示した。AIM MRI法は、薬刺激による通電に伴う脳賦活が描出可能であることをのみならず、従来得られなかった薬刺激（薬堵）による脳賦活領域の描出も可能であることが示された。

1 はじめに
磁気共鳴画像法（Magnetic Resonance Imaging; MRI）による脳賦活画像は、血流量と酸化ヘモグロビンとの割合を反映した BOLD 効果（Blood Oxygen Level Dependent）による方法（脳機能画像法：functional MRI; fMRI）1, 6, 7）または賦活に伴う脳灌流量を観察する方法（脳灌流画像法：perfusion MRI）5, 8）など、神経活動によって引き起こされた局所脳血流の変化を観察する方法が中心である。これらの手法は、非侵害的に脳活動を観察する方法として優れた空間分解能および局在性に優れるものの、脳活動に伴って生じる脳血流の変化に依存するため、得られた画像上の信号変化は主として血管に生じていると考えられ、賦活領域と高信号領域に位置的ない不一致が生じる恐れがある。

最近 Lin と Koretsky は、脳血流の変化に依存せず、神経活動を直接的に観察する新しいfMRIの可能性を示した7）；それはActivity-Induced Manganese（AIM）Dependent Contrast MRI（AIM MRI）と呼ばれ、MRIにおいて造影効果を持つマンガンイオン（Mn^{2+}）が、神経活動に伴いカルシウムイオン（Ca^{2+}）チャネルを通過して細胞内に流入し、造影効果を発揮する現象をT1強調像より観察する方法である。神経活動に伴って細胞内にCa^{2+}の流入が生じることは良く知られているが、Ca^{2+}自体はMRIで観察することは出来ない。一方、Mn^{2+}はT1およびT2緩和時間の両方を短縮させる造影剤として知られ8, 12）；Mn^{2+}の存在T1強調画像において高信号となる。Mn^{2+}はCa^{2+}と同じイオン半径を持つ2価の陽性陽イオンである。多くの生物系においてMn^{2+}はCa^{2+}に似た振る舞いをし13, 14）；神経興奮に伴ってligand-gatedやvoltage-gatedなどのCa^{2+}チャネルを通過して細胞内に流れることが報告され15-17）；voltage-gated Ca^{2+}チャネル阻害薬であるverapamilは、神経内へのMn^{2+}の流入を阻害することが知られている18）；一度細胞内に流入したMn^{2+}は比較的長い時間排出されないため、貯分権を繰り返す神経細胞においてMn^{2+}の蓄積が生じることが期待できる。通常、脳においては、血液脳関門（Blood Brain Barrier; BBB）が存在するため、
経動脈的に投与されたMn⁺⁺の絡みは脳内に流入できないが、高張性マンニトールによってBBBを開き、微量のMn⁺⁺を動脈脈から定常的に灌流することで、脳内にMn⁺⁺を送り届ける手法が示された⁵¹。これにより、何らかの原因で脱分極を生じた神経細胞に対して、その周囲に存在するMn⁺⁺が流入、細胞内に蓄積した結果、T₁強調MRIにおいて高信号として捉える事が可能となる。

LinとKoretskyは、脳脹活によって生じるMRI信号のマンガン依存の変化は、Ca⁺⁺チャネルを通るMn⁺⁺の蓄積によって細胞内の水のT₂の短縮が引き起こされることを線とし、ラットにおいてグルタミン酸投与による脳脹活の描出が可能であり、また二酸化炭素負荷に伴う血流の増加によってAIM MRIの信号強度が変化しないことを示した⁵¹。すなわち、AIM MRIにおける信号強度は、脳血流に依存していた脳循環の変動を感受せず、神経細胞の脱分極に伴うMn⁺⁺の蓄積によるT₂緩和時間の短縮を反映するものであると言える。

LinとKoretskyの研究において、AIM MRIにより通電を用いた体感覚刺激による脳脹活を捉えることが示唆された⁵¹が、対照を用いた統計的な検討および薬剤に関する検討は未だなされていない。本研究では、予備実験にてグルタミン酸投与によりAIM MRIの脳脹活描出の再現性および脳内Mn⁺⁺分布を確認した上で、ラット前肢における、通電刺激および物理的な刺激による脳脹活に伴う脳脅活領域の検討を行うことを目的とした。

II 対象と方法

実験動物の処置

雄性Wistarラット (n=30, 312±13 g (S.D.), 清水実験動物) を無作為に、置換群 (n=5), 電通電群 (n=5), および無置換群 (n=5) の3群、無刺激群 (n=5), 生理食塩水投与群 (n=5), およびグルタミン酸投与群 (n=5) の3群、計6群に分け、前3群を本実験における対象とし、後3群を予備実験に使用した。ラットの麻酔は、ジェチルエーテル（ナカライテクス社製）により導入され、気管挿管後、歯傷着用の人工呼吸器（Model 683, Harvard Instruments社製, 米国）を用いて、2%~2.3%のハロセン麻酔（ハロセン、武田薬品工業社製）により手術処置の間、維持した。手術及び実験中の投与酸素濃度は約50%である。薬剤投与のために左大腿静脈を、血圧および血流ガスの観察のために左大腿動脈を、および右内顔動脈に対して薬剤を投与するために右外顔動脈を、ポリエチレンチューブ（PE-50, Clay

α-クロラロール

ウレタンとα-クロラロール

ジェチルエーテル

ハロセン

手術

30-60分

35分

22分

10分

刺激

MnCl₂

D-マンニトール

Pancuronium bromide

図1. AIM MRI実験プロトコール

AIM MRI実験の手順を経時的に示す。手術に必要なハロセン麻酔の効果が確認された後、MnCl₂を手術部に10分間静注し、その後、D-マンニトールを静注してD-マンニトール血圧反応を観察し、Pancuronium bromideを静注して呼吸抑制を観察した。その後、α-クロラロールを静注してα-クロラロール血圧反応を観察した。手術22分後にMnCl₂を静注し、その後、10分間静注し、その後、D-マンニトールを静注してD-マンニトール血圧反応を観察し、Pancuronium bromideを静注して呼吸抑制を観察した。
Adams社製、米国）で確認した。大脳動脈を通じて血圧が常時観測され、30分毎に血液ガスを採取し、PaO₂、PaCO₂およびpHを計測（Model 178、CORNIG社製、米国）、生理的範囲に維持した。体温は自動調節機能をもつ温風機により、直腸温を約37℃に維持した。手術後、腹腔内にα-クロラロース（alpha-chloralose、34 mg/kg、ナクライテックス社製）およびウレタン（450 mg/kg、Aldrich化学公司社製、米国）を混合した麻酔薬を投与した。尾のピンチ刺激により、苦痛が生じない十分な麻酔深度が保たれていることを確認後、体動を防止するために点滅パルビロン（pancuronium bromide、2.5mg/kg、Organon社製、米国）を静脈投与した。ハロセン麻酔の効果が刺激実験に及ぼす影響を除くために、ハロセン吸入停止後少なくとも45分間時間をおき、α-クロラロース（34 mg/kg）を追加投与した。その後、緩衝生理食塩溶液（pH-buffered saline solution）に溶かした塩化マンガン（MnCl₂·12H₂O、Sigma社製、米国）をシリジンボン（Neuroscience社製、米国）を用いて6.4 μmol/min（3.2 ml/h）で右外側動脈を通じ、右内側動脈から灌流した。投与されたMnCl₂の合計量は0.205 mmol（MnCl₂溶液で1.71 ml）、投与時間は約32分であった。BBBを開くために、25％マンニトール（D-mannitol、5 ml/kg、Sigma社製、米国）溶液を刺激開始直前に右内側動脈から投与した。刺激後、実験動物を測定ブロープに固定し、MRIの撮像を行った（図1）。

脳賦活刺激

対照となる遮蔽群は、2本の鈍炎用針（ディスポーサブル鈍KN-107F No.1 30 mm、セイリン社製）を左前肢皮下に約5 mm刺入し、マンニトール投与後、刺激を加えなかった。鈍電気刺激は、遮蔽群と同じ2本の鈍炎用針による電極を左前肢手掛部相当部の皮下に約5 mm刺入し、電気刺激装置（STIMULATOR 2907、日本電気三栄社製）に接続、マンニトール投与後、直流10 V、持続時間0.2 ms、2 Hz の矩形波により10分間通電した。鈍刺激は、遮蔽群と同じ鈍炎用針をラットの前肢の背側第1および第2中手骨間（合谷穴：LI 4、相当部位）に約5 mm刺入し、マンニトールを投与した後、周期2 Hz、振幅約3 mmで10分間、刺激・抜髪を繰り返す刺激（雀啄）を加えた。

予備実験1において、対照となる生理食塩水投与群では、マンニトール投与2分後に0.2 mlの生理食塩水を右外側動脈を通じて右内側動脈に投与した。グルタミン酸投与群では、マンニトール投与直後、グルタミン酸（L-glutamic acid：総量0.2 ml、10 mg/kg、Sigma社製、米国）溶液を右外側動脈を通じて右内側動脈に投与した。予備実験2において、対照となる無刺激群では、鈍の刺激を行わず、マンニトール投与後も刺激を加えなかった。

MRI測定

4.7 T水平型実験用MRI装置（CSP-II-Omega、Bruker社製、ドイツ）および直径65 mmのshiedeled gradientコイルを使用した。受信および送信コイルは、自家製の直径25 mmの表面コイルを使用した。T₁強調画像にはスピン・エコー法およびグラディエント・エコー法を使用し、スピン・エコー法で、TR=400 ms、TE=12 ms、マトリックスサイズ=256×256、field of view（FOV）=28 mm、スライス厚=1 mm、積算回数=8を使用した。グラディエント・エコー法で、TR=150 ms、TE=5.4 ms、マトリックスサイズ=256×256、表面コイルの中心におけるフリップ角=50°、field of view（FOV）=28 mm、スライス厚=1 mm、積算回数=8を使用した。1回の撮像に要した時間は、スピン・エコー法およびグラディエント・エコー法合わせて約20分であった。

画像処理および統計解析

画像処理は、UNIXコンピュータ（PWS Type C、日本コンピュータ社製）上で動作するソフトウェアMRVision（MRVision社製、米国）および、バーソナルコンピュータ（Power Macintosh 8500、Apple社製、米国）上で動作するソフトウェア言語IDL（Interactive Data Language、Research system社製、米国）を使用した。統計処理において群間比較を行うために、画像上で関心領域（Region of Interest；ROI）を設定した部位の対側に対する信号比を求めた。統計解析は、解析ソフトウェアStatView J-4.5（Abacus Concepts社製、米国）を使用し、un-paired t検定および多変比較Dunnett検定により有意水準を1％とした。また全てのデータを平均値±標準偏差（mean±S.D.）で表した。
実験動物のモニター

ラットの平均血圧は、MnCl₂溶液投与前115.2±7.3 mmHg、投与後104.3±13.5 mmHgで、MnCl₂溶液により約10%低下した。マンニトール投与後、血圧は平均±20 mmHg変動したが、すぐにベースラインに戻り、またグルタミン酸投与、鈴通電刺激および鈴鈴刺激中、血圧は平均±18 mmHg変動したが、刺激終了後ベースラインに戻り、血液ガスおよびpHは生理的範囲内に維持され、pH=7.37±0.17、PaCO₂=39.2±4.0 mmHg、およびPaO₂=119.8±8.9 mmHgであった。

予備実験1 生理食塩水およびグルタミン酸投与によるAIM MRIの比較実験

対照となる生理食塩水投与群におけるAIM MRIが得られた。図2にその典型例を示す。得られた画像において、脳室以外に高信号領域は見られなかった。ROIを大脳皮質（cerebral cortex）および尾状核-被殻部（caudate-putamen）に設定し、対照に対する信号強度比を算出した。図2に典型的なROIの選択を示した。その値は大脳皮質で103±6%，尾状核-被殻部で99±7%であった。

図3. グルタミン酸投与によるAIM MRIの典型的な一例
刺激前の脳全体に及ぶ広範囲かつ著著な高信号が見られた。これは、Mn²⁺が脳全領域に分布していることを示す。ただし、神経細胞の少ない脳室では、造影効果が小さい。スライス位置は、図2と同様である。

図4. グルタミン酸投与群と生理食塩水投与群とのAIM MRI信号強度比の比較

グルタミン酸投与群の対照に対する信号強度比は、大脳皮質で213±34%，尾状核-被殻部で198±30%で、生理食塩水投与群では、大脳皮質で103±6%，尾状核-被殻部で98±7%であり、AIM MRIにおけるグルタミン酸投与群の信号強度比は、対照となる生理食塩水投与群に対して有意に高値であった。

予備実験2

無刺激および置換のAIM MRIの比較実験
図5．前肢の鍼通電によるAIM MRIの典型的な一例

図中に示した矢状断のスライス位置における、前肢の鍼通電によるAIM MRIの典型的な一例および脳断面（Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinatesより）を示す。右大脳皮質一次感覚野の前肢領域に、局所的な高信号領域が観察された。この例では、尾状核-被殻部の一部にも小さな高信号が見られる。

対照となる無刺激群におけるAIM MRIが得られた。得られた画像において、脳室以外に高信号領域は見られなかった。右大脳皮質一次感覚野の前肢領域（primary somatosensory cortex, forelimb region; S1FL）にROIを設定し、対側に対する信号強度比を算出した。図2cにその典型的なROIの選択を示した。信号強度比の値はS1FLで103±7 %であった。

置滅群におけるAIM MRIが得られた。得られた画像において、脳室以外に高信号領域は見られなかった。無刺激群と同様にROIを設定し、対側に対する信号強度比を算出した。その値はS1FLで105±9 %であった。置滅群における信号強度比は、無刺激群に対して有意差が認められなかった。

前肢の鍼通電刺激と雀啄による鍼刺激を AIM MRIの比較実験

対照となる置滅群は、予備実験2に記載した群と同じものである。ROIの設定および信号強度比の算出も同一である。

鍼通電群におけるAIM MRIが得られた。図5にその典型的例を示す。得られた画像において、脳室以外に大脳皮質のS1FLを中心とした高信号領域が見られた。置滅群と同様にS1FLにROIを設ける。

図6. 鍼通電群および雀啄群と置滅群（対照）との右大脳皮質一次感覚野の前肢領域におけるAIM MRI信号強度比の比較

鍼通電群、雀啄群および置滅群（対照）のAIM MRI信号強度比（平均値±標準偏差）を示す。右大脳皮質一次感覚野の前肢領域（S1FL）に関心領域を設定し、対側に対する信号強度比を算出した。その値は鍼通電群で159±18 %、雀啄群で144±15 %、置滅群で106±9 %であった。一次感覚野の前肢領域において、AIM MRIにおける鍼通電群および雀啄群の信号強度比は、対照となる置滅群に対して有意に高値であった。
図7. 前肢の錐刺激（雀探）によるAIM MRIの典型的な一例

図7に示した矢状断のスライス位置における、前肢の錐刺激（雀探）によるAIM MRIの典型的な一例および脳地図（Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinatesより）を示す。大脳皮質一次感覚野の前肢領域付近に、局所的な高信号領域が観察された。この例では、帯状に数本の高信号が見られる。

定し（図2.c）、対側に対する信号強度比を算出した。その値はS1FLで159±18%であった。錐通電群における信号強度比は、対照群と置換群に対して有意差に高値であった（図6）。

雀探群におけるAIM MRIが得られた。図7にその典型例を示す。得られた画像において、脳室以外に大脳皮質のS1FLを中心とした高信号領域が観察された。置換群と同様にS1FLにROIを設定し（図2.c）、対側に対する信号強度比を算出した。その値はS1FLで144±15%であった。雀探群における信号強度比は、対照群と置換群に対して有意に高値であった（図6）。

IV 考察

置換群、錐通電群、および雀探群の3群において、AIM MRIが得られた。左前肢の、錐通電群および雀探群の両方において、右脳S1FLでの対側に対する信号強度比は、対照群と置換群に対して有意に高値であった。予備実験1において、グルタミン酸投与群における大脳皮質および尾状核-被殻部全域に信号増強が観測され、それに対側に対する信号強度比は、対照群の生理食塩水投与群に対して有意に高値であった。予備実験2において、置換群は無刺激群に対して有意差が認められなかった。また全ての群において、脳室に信号増強が観察された。

予備実験1の結果から、グルタミン酸投与群における大脳皮質および尾状核-被殻部の全域にわたる広範囲な高信号領域はLinとKoretskyの報告と一致し、大脳皮質で得られた213±34%の信号は、彼らの報告の値238±23%に近い値となっ

ここから、AIM MRIによる脳賦活の描出が再現され、本実験に使用した手法により脳賦活の描出が可能であることが示された。また、神経細胞が多く存在する大脳皮質および尾状核-被殻部全域にわたって比較的均一な高信号が得られることから、本実験で用いた持続的なMn2+投与方法により、AIM MRIは、脳室などの神経細胞が存在しない領域を除く、脳半球全域の賦活を感受し得ることが示唆された。

予備実験2の結果から、置換はAIM MRIにおいて感受性を持たないことが示された。その理由
として、AIM MRIの感度面での限界、脳皮質への到達過程における修飾などが考えられる。また、鍼灸臨床における鍼灸学では、鍼灸針が皮膚を貫通する切皮、皮下や筋肉への刺入、鍼灸針の留置、および拔針など複雑な刺激が加わるものの、本実験では脳内にMn²⁺が流入する状態になる以前に、切皮および刺入を終えており、得られたAIM MRIには、これらの刺激が反映されていない。そのため、本実験における結果を、単純に臨床における鍼灸学と比較して考察することは出来ないと考えられる。

鍼通電におけるS1FL領域を中心とした局所的な高信号の領域の存在は、LinとKoretskyの報告における針電極を用いた通電刺激の一例と一致し、大脳皮質のS1FL領域で得られた159±18%の高信号は、報告された一例の150%とほぼ等しい値であった。17、鍼通電におけるS1FL領域を中心とした局所的な高信号は、対照となる置鍼群に対し有意であり、ゆえにAIM MRIによって前肢通電に伴う脳活動を抽出可能であることが示された。これらの高信号領域は、通電による刺激が大脳皮質のS1FL領域に投射、その領域で生じた神経発火に伴う細胞内へのMn²⁺の流入および蓄積によってT₁T₁を短縮する現象、T₁強調画像における高信号になったと考えられる。

最大で20～30%程度とされる従来のBOLD効果によるfMRIと比較して、AIM MRIで得られる信号変化は極めて大きいものである。13、BOLD効果をもたらす酸化型Hbモーグロビンと還元型Hbモーグロビンの存在比の変化によって得られる磁化率の変動とAIM MRIのT₂強調画像において信号上昇をもたらすMn²⁺の蓄積から生じるT₂緩和時間の変動を一概に比較することは難しいが、後者は造影物質が直接組織に蓄積されることから、より大きな信号変化となることが期待できる。これは、従来検出不可能であった、より微弱な刺激を検出しうる可能性があることを意味する。またLinとKoretskyが指摘するように、BOLD効果によるfMRIで起こりうる「脳活動領域高信号領域の位置の不一致」や「活動部位辺りの血液の影響の混入」、AIM MRIでは存在せず、より詳細でかつ直接的な脳活動の検出が可能である。

鍼灸臨床において常される刺激方法である雀琢における脳活動画像はこれまで報告が多く、今回初めて検出された。雀琢群におけるS1FL領域を中心とした局所的な高信号は対照群である置鍼群に対し有意であり、ゆえにAIM MRIによって鍼刺激（雀琢）に伴う脳活動を抽出可能であることが示された。現在までに行われた鍼刺激による脳活動画像の検討は、動物においては報告はなく、ヒトに関しては1995年YoshidaによってBOLD効果による脳機能画像の鍼刺激検討が初めて示唆されており、皮膚における比較的広い刺激領域をもつローラー鍼による報告がある。18、1998年にChoiらにより鍼刺激による視覚野領域の脳活動の報告があるが、我々行った追試では再現しなかった。鍼刺激は、皮膚における刺激面積が狭く、比較的弱い強度であるため、ヒトによる1.5Tの磁場強度での脳機能画像においては、感度の面から現時点では再現性のある測定が困難であると考えられる。今回のAIM MRIによる結果は、今後、刺激パラダイムや解析方法の検討などにより、鍼灸刺激におけるさらに詳細な脳機能研究の端緒を開くものと期待できる。

AIM MRIにおいて脳室内のCSFに由来した高信号が見られるとは先に報告があり、12、17、脳室には神経細胞が存在しないため、この領域での信号上昇は神経細胞が伴わないものである。これでは、CSFへのMn²⁺の分泌あるいは漏出によるもの、およびBBBの存在しない組織へのMn²⁺の沈着によるものであると考えられる。このような神経細胞が伴わない信号上昇を除外することは、今後、本法により脳機能を評価するうえでの課題となると思われる。

AIM MRIの問題点として、Mn²⁺は、その濃度や投与量によっては、生理的状態における脳活動を観察する上で障害となる恐れがある。最も深刻なMn²⁺の性質は、LinとKoretskyが指摘するように、循環機能に与える急性毒性である。Mn²⁺はCa²⁺に類似し、その濃度に依存してCa²⁺ antagonistとCa²⁺ antagonistの両方の役割を果たす。例えば、1.8mMではMn²⁺はCa²⁺の流入を阻害し、0.3mMでは逆に促進する。今回の実験におけるMn²⁺の投与は、あらかじめ行われた予備実験により、実験動物の生理状態に深刻な影響を及ぼさないと投与量、濃度および投与速度を確認した上で行われた。その結果、MnCl₂溶液灌流前後で約10
Activity-Induced Manganese Dependent Contrast MRIを用いた鰭刺激によるラット脳活動の検討

%の血圧低下が観られたものの、この程度の血圧変化は生理的範囲内と考えられ、Mn²⁺が循環機能に与える影響を小さく抑えることが可能である。Mn²⁺投与量は、MRIの測定感度が許す限り少ないことが望ましく、今後更なる最適化が必要であると考えられる。また、BBBを開くために行う高濃度のマンニトール投与が脳神経発火に関与する影響については不明な点が多い、そこで、マンニトール投与がMRIの信号強度に影響を与えるかどうかを検討するための予備実験を行った。その結果、時間が経過して収縮されたT₁強調MRIにおける信号強度は、マンニトール投与前後において有意に変化しなかった。ゆえに、本実験の条件においては、マンニトール投与がMRI信号強度に影響を及ぼさないと考えられた。

脳活動の設定はAIM MRIの信号強度に大きな影響を及ぼす。あらかじめ行われた予備実験において、脳活動が強まる場合（パロセシン麻酔20%）は脳活動そのものが抑制され、体性観察者刺激によりSIFLは高信号を示さなかった。これにより、Mn²⁺が投与されBBBが開いた状態であっても、脳活動が抑制されている状態では、AIM MRIにおいて高信号とはならないことを示している。

逆に脳活動が高まる場合（α-コラログロコースを15 mg/kgおよびクレアイン450 mg/kgの混合を一度投与）では、脳半球の全域に高信号が観察された。これは、脳活動が低い場合は、外的な刺激を加えない状態でも、脳神経細胞内に脱分極が生じていることを示している。これらの結果を基に、本実験における脳活動条件が設定された。今回使用した条件がLinとKoretzkyの研究における条件とやや異なるのは、実験時間やラットの系統の差異により生じたものであると思われる。鰭刺激など微弱な刺激によるAIM MRI実験においては、脳活動による実験結果が大きく変化する可能性があるため、脳活動は注意深く最適化される必要があると考えられた。

AIM MRIの適用の限界として、最も大きなものは「ヒトに対して適用が困難」である点である。これは、ヒトにおいて鰭を持つMn²⁺を投与することが出来ず、また高張性マンニトールの局所投与が出来ないためである。しかしながら、本法は動物実験においては、現在のところ最も高齢者の脳活動画像が作成できる手法であると思われる。また、一度Mn²⁺の蓄積が生じた細胞では、それが長期間排出されないため、例えば神経細胞の抑制に関する研究などに必要な経時的な観察は困難である。将来、MRIに対する高い感受性を備えたままで、より無害かつ利用性の高いCa²⁺様造影剤が利用可能となることが期待される。

AIM MRIによる脳活動画像を使用して脳機能を評価する際、問題となるのは「賦活領域」と「非賦活領域」との間隔をどの信号強度で決定するかであり、加えて、脳室や前記の麻酔が浅いために生じる高信号のような「与えた刺激に対する非特異的信号増強が生じる領域」をどのように除外するかである。さらに、細胞内に入るMn²⁺流量や蓄積したMn²⁺の濃度などの定量的評価が必要であると考えられ、それはT₁、T₂、緩和時間の測定等を同時に行うことにより、将来実現され得ると思われる、定量的なMn²⁺動態測定の可能性とAIM MRIが持つ脳活動に対する極めて高い感度と空間分解能は、Mn²⁺の持つ毒性など陽の光と暗黒の間隔を考えててもなお、新しい脳機能画像としての役割を期待させるのに十分である。

V 結語

ラット脳において、T₁、T₂、緩和時間を短縮させる効果を持つMn²⁺が、神経細胞の興奮に伴い、Ca²⁺チャネルを通過して細胞内に流入することで、T₁強調画像において造影効果を持つAIM MRIが得られた。予備実験において、グルタミン酸投与におけるAIM MRIの脳活動画像の再現性が確認され、鰭を前肢に留置するのみではAIM MRIに信号増強をもたらさないことが示された。前肢における針電極を用いた通電刺激および鰭刺激（電極）によって、ラット前肢領域の一次感受野において著明な信号増強が観察され、これらの刺激の大脳皮質感受野領域への投射が画像において確認された。本研究により、鰭電極に伴う脳活動が AIM MRI法で描出可能であることを統計的に示すと共に、従来得られなかった鰭刺激（電極）による脳活動領域の描出も可能であることが示された。本法は鰭刺激による脳活動を直接的に描出する方法として有用であり、今後の脳炎研究の有力な手段となりうると考えられた。
VI 謝辞

本研究に際し、終始御指導を賜わりました明治薬学大学薬学部薬学教室中村教授に深謝を捧げます。そして御助言ならびにご協力を賜わりました同薬学部薬学教室小澤助教授、藤田雅宏講師、同第2生物化学教室福田耕治教授、Carnegie Mellon University, The Pittsburgh NMR Center for Biomedical Research, Department of Biological Sciences, Associate ProfessorであるALAN P. KORETSKY, Ph.D., 京都府立医科大学放射線科学教室成瀬昭二助教授、同薬学部薬学教室樫口敏宏講師、明治薬学大学薬学部薬学教室井田健司教授に深く感謝いたします。また、終始実験に御協力をいただきました京都府立医科大学竹上誠男氏、明治薬学大学薬学部の中村哲之光氏には特に感謝いたします。共に議論を深めてくれた同大学薬学部薬学教室福永雅高、染谷芳明、渡辺康晴各氏ならびに同研修生秋山瑞希氏に感謝いたします。

VII 参考文献

14) Shibuya I, Douglas WW: Indications from Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and Asclen close Ca(2+) channels that are spontaneously open but not those opened by high [K+]; and that Ca preferentially blocks the latter. J Cell Calcium, 14(1): 33-44, 1993.

17) Kita H, Narita K, Van der Kloot W: Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn(2+), Ca(2+), and Ni(2+) -saline solutions. Brain Res, 205(1): 111-21, 1981.

1997
Evaluation of Brain Activation with Acupuncture Stimulation using Activity-Induced Manganese Dependent Contrast MRI in the Rat

AOKI Ichio

Department of Neurosurgery, Graduate School of Acupuncture and Moxibustion, Meiji University of Oriental Medicine

Summary: Since it is difficult to examine brain activation induced by acupuncture stimulation using BOLD contrast functional MRI, a new method of functional MRI using manganese ion (Mn^{2+}) as a contrast agent was recently developed by Lin and Koretsky.

The new method which is called activity-induced manganese dependent contrast magnetic resonance imaging (AIM MRI) shows high sensitivity in detecting NMR signals from the activated brain with high spatial resolution, compared with other functional MRI methods. Using this method, brain activation induced by electroacupuncture and the sparrow-pecking method of acupuncture on the rat forelimb was examined. Signal intensity ratios of the forelimb region in the primary somatosensory cortex to the contralateral region were $159 \pm 18\%$ with electroacupuncture and $144 \pm 15\%$ with the sparrow pecking method of acupuncture, in contrast to $105 \pm 9\%$ with retaining needle as the control. The signal intensity on AIM MRI was significantly increased by both the electroacupuncture and the sparrow-pecking method compared with that in the control group ($P<0.01$). AIM MRI was suitable for examining brain activation by minimal stimulation such as acupuncture.