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Correction to Phase Boundary near v=1 in
Forced van der Pol Oscillator

Yasuo MORIMOTO

Department of Physics, Meiji College of Oriental Medicine

Summary :

The phase diagram of forced van der Pol oscillator near ¥=1 can not be ex-

plained by the traditional theory which assumes stationary solution such as guasi-peri-
odic or fundamental oscillation. They are mterpretted by the model that self-sustained
oscillation is modulated by the external force. The applicability range of the theory 1s

also discussed.
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1. Introduction

Forced oscillations in nonlinear oscillator
systems have been well investigated as fairly
suitable theme of nonlinear oscillation the-
ory' . In theoretical analyses appropriate
stationary solutions are assumed such as fun-
damental (FO hereafter), quasi-periodic (QP
hereafter), harmonic (HO hereafter) or self-
(S0 hereafter), and

analyzed. By

sustained oscillations

their stabilities are these
method the phase diagram of various oscil-
lation modes is obtained. The example for
forced van der Pol oscillator is represented
in Fig.l which is a well known diagram and
is cited in usual textbooks?'. Here the an-
gular frequency of S0 1s taken to be 1. The
vertical and horizontal axes represent the
amplitude E and the angular frequency » of
In the region written by
“FO”, “QP” and “HO" FO, QP and HO ap-

pear, respectively. The phase diagram shows

external force.

that there is a critical value of E, E. and
for E>E. FO and for E>E. QP appear with

Forced van der Pol Oscillator, Phase Diagram, and Approximation

fixed v such as v=2.5.
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Fig.1. Phase diagram of forced van der Pol

oscillator.
The regions “1/2HO” and “2HO" do not ap-
pear for eq. (1) since the asymmetry in non-
linearity 1s omitted.
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Recently the detailed numerical analyses
have been undertaken by the author for forced
van der Pol oscillator®’. His result shows
that the region of E<{E. where QP is ex-
pected to be present theoretically is not
uniform and various oscillating states are
present. Simultaneously transition phenomena
near E. have been reported which have not
been predicted theoretically. As a sequel
of this work we investigate the oscillation
behaviours near »=1 of the forced van der
Pol oscillator by numerical method. We find
that the numerical result can not be explained
by the traditional theory which assumes the
presence of stationary solution such as FO
or QP. This is caused by the fact thatl the
assumption does not hold near v=1, and we
succeed in deriving the model interpreting
the result.

In the next section the method and the
results of numerical analyses are mentioned.
In section 3 the new idea which can explain
the results is introduced. Section 4 1s de-
voted to the concluding remarks and the ap-
plicability limit of the theory will be dis-
cussed.

2. Method and Results of Numerical An-
alyses

The basic equation studied in this article

is the following forced van der Pol oscilla-
tor equation;

%—u(l—x")x+wfx=Ecosvt. (1)

¢ and wy are gain and angular frequency of
SO and we take #=1 and @w,=1 without loss
of generality. E and v are amplitude and an-
gular frequency of the external force. The
equation is analyzed by second order Runge-
Kutta method. To grasp the characteristics
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W

Fig.2. Phase space orbit for E=0.13 and v=
0.98.

of the oscillations the orbit in phase space
is utilized. The example i1s given in Fig.2.
This is small E case where QP is expected
to be present theoretically, however the cir-
cumference of the orbit resembles to that of
free van der Pol oscillator (E=0). Accord-
ingly we regard that SO 1s modulated by the
external force in this region of E. We take
as a measure of modulation the quantity W
defined 1n Fig.2. When v = 1.5, W changes
with E as shown in Fig.3*'. There are three
critical values of E, E;, E; and E;. For E>>
Ea FO appears, that i1s, Ea corresponds to E.
mentioned before. For E<<E; QP is expected
to be present, however this region is sepa-
rated into three regions by E, and E,. In the
region of E<{E,; we can regard that SO is
weakly modulated by the external force For
E,<E<_Ej4, SO and the external force. are
comparable order. For E,<<E<E,; S0 prevails
the external force slightily, and for E,<E<
E: wvice versa. This is the result of ref. (3).

When v approches 1 (lv—1/=0.1) the region
between B, and E4 becomes narrow and E;, E,
and E; seem to be degenerate. Thus we set E,
=E;=E:=Ec. In this case W shows varia-

tion with I as represented in Fig.4. For E
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Fig.4. E-dependence of W for »=0.98.

>E. FO appears, and for E<<E. QP comes
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Fig.h. Numerically obtained phase boundary

near »==1.

out. The v-dependence of . 1s plotted in
Fig.5. The dotted line in Fig.5 is a theo-
retical curve of E. which will be discussed
m section 3. This i1s a part of the phase di-
agram near ¥»=1, however this diagram can
not be explained by the traditional theory
which assumes stationary solutions as will be

discussed in the next section.

3. Theoretical Derivation of Phase Bound-
ary near v=1
In the traditional theory the phase bound-
ary or E. separating the regions of FO and
QP 1s derived by assuming the stationary so-
lution of FO or QP in eq. (1).

At first we assume FO to eq. (1), that is,

x(t)=acosvt + bsinvt. 2)

Substituting eq. (2] into eq. (1) and equating

the terms of cosvt and sinvt, we obtain the
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following relation;

(- /42 +{(1—»? )/ }? Ir?
=(E/m ). (3)

Here r® =a® +b?. By the stability analysis
of this solution the condition r=v"2 is
found. E. is determined from eq (3) by let-
ting =12, which gives

Ee={201—u® )% + pPu? 2}, (4)

On the other hand if we assume QP solution
to eq. (1)

x(t)=acosvt + bsinvt+ recosv ot. t3]]

The first and second terms represent the com-
ponent of the external force and the third
that of SO. Substituting eq. (5) into eq. (1)
and equating the terms of cosvt, sinvt, cosy ot

and siny ot we obtain the following relation;

po=1 and r.®+2r* =4,
(2—3R2/AP +{UU—v2 )/ )]
X (4—R*)=(B/mw)?. (6)

Here r* =a®+b? and R?=r? +rs®. In this
case E. is decided when we set rs=0 and r
=12 in eq. (6), since FO appears for r«=0.
Of course E. obtained from eq. (6) coincides
with eq. (4). E. becomes minimum for dE./dv
=0. From eq. (4] vmin which gives lowest

value of E. is determined as,
Vrmn:(l 7)5[2/8)“2, (7)

which is a reasonable result since eq. (7)
gives for a1, vmo=1—p?/16. As is well
known this is a corrected value of the angu-
lar frequency of 30 to first approximation
obtained by perturbation method. The value
of Be. Eemin for v =vmin is then obtained

as,

E(mm:(]7ﬁ2/32_}l4/16)“2. (S)

For #=1 vmin=0.94 and Ecm=0.68, howev-
er numerical result shows E.=0 for »=0.94
(Fig.5), which indicates the above discus-
sions not to be correct.

We consider this discrepancy to originate
[rom the assumption of the stationary oscil-
lation such as FO or QP. Instead of them
we use as the solution to eq. (1) SO modu-
lated by the external force for small E, The
form of the orbit in Fig.2 suggests this
idea. Thus we assume the solution af eq. (1)

as follows;
x(t)={A+a(t)}cost. (9)

Here A is the amplitude of 5O and we con-
sider that the external force causes modula-
tion a(t) in the amplitude. The relation A
=2>a(t) holds. Substituting eq. (9) into
eq. (1) yields

dcost — (2sint+ (A-+a)*cos®t}

X (A+a)sinta+ (A+a)®cos? tsint

= Ecostcos{ (v —1)t}

— Esintsin{y —1)t}. 10y

Since a(t) is considered to be slowly vary-
ing, 4(t)=0. Using the relation A=22»a(t)
and equating the terms of cost and sint the
following relation is obtained;

a(t)=(E/2)cos{(v —1)t}. i)

W is estimated nearly equal to be 21/{a’(t))
where the average { ) is taken over a period.
Thus eq. (1) gives,

W=E/(1 2 (y—1)). 12)

Fe may be determined from the condition that
the relation AZ>a(t) does not hold, that is,
W=A. Thus E: 1s decided from eq. {I2 as,
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Ee=v 2w —1)A=2y2(»—1). (13

The lowesest order correction to the angular

frequency changes eq. (I3 as,

Ee=2V2(u—1+u*/16)
=2V 2(w—0.%) for p=1. (14)

Eq. (4 for pg=1 is plotted in Fig.5 by dot-
ted line. Although the quantitative agree-
ment is incomplete, it explains the data qual-
itatively rather than the traditional theory

does.

4. Concluding Remarks

It is found that the traditional theory can
not explain the numerical results of the phase
boundary of the forced van der Pol oscilla-
. This fact indicales the fail-

ure of the assumption for small E that the

tor near v=

stationary solutions such as QP and FO are
present. Instead of it the model that SO is
weakly modulated by the external force is
proposed in small E region, which can ex-
plain the numerical results although it is
incomplete quantitatively. One of the rea-
sons for this incompleteness may arise from
the condition W=A utilized when E. 1s de-
termined. As is clear from Figs.2 and 4 this

condition is not necessarily fulfilled.

The numerical data can be well explained by
the traditional theory for the region |v—1|
—0.2, on the other hand they can not be done
for the region |v—1]=<0.1. Why is it? One
of the plausible reasons is as follows: if A
= E: the assumption of stationary solution
may be available near E.. While for A E.
SO may be dominant even if the external
force acts on the oscillator. Accordingly the
condition that the traditional theory holds

can be considered to be as,

Ee=2v2ly—1i=1, {15

which gives |v—1|=0.3. While the proposed
model in this article 1s appropriate for the
region |v—11=<0.3. This is a reasonable re-
sult which gives the criterion whether the
trasitional theory or present model is appro-

priate.

References

1) C. Hayashi: “Nonlinear Oscillation in Phys-
ical Systems”, (McGraw-Hill, New York,
1964).

2) Y. Ishibashi: “Theory of Nonlinear Electri-
cal Circuits”, (Kyohritsu, Tokyo, 1976).

3) Y. Morimoto: “Transition Phenomena of
Forced van der Pol Oscillator Observed by
Numerical Analysis”, J. Phys. Soc. Jpn.
55 (1986) , ppld07—1410.



Correction to Phase Boundary near v=1 in Forced van der Pol Oscillator

A ZNIz7 7>« F7 » F—VIEFEFO
v= 1K~ DR IE

igER A ARy HE
FA LR
BE . v= 1 EFETOEH van der Pol fRBEFOMBIE , G5 &Y 70 B MR T 5 AT i k8 24

ETHUEROMER/TI, 5 F SRSy, RLAKRSMANICLH EFs L LW S EF W
Ch-THRENE T L7, TOEFLVOBERABRAIC YW TLER T AT EHNTER.



