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Estimation of Bifurcation Points in Duffing Equation with
Double Minimum Potential

MORIMOTO Yasuo

Department of Physics, Meiji College of Oriental Medicine

Summary : Bifurcation phenomena are investigated in Duffing equation with double
minimum potential under weak external force. They arise when the oscillation confined
within one side well extends over two wells, and cease when the oscillation can not feel
the double minimum nature of the original potential for the sake of its large amplitude
with the increase of the external force. The manmer of the bifurcation is very sensi-
tive to the frequency of the external force. We succeeded in roughly estimating the
critical values of the external force at which the bifurcations occur and cease, using
harmonic approximation of the original double minimum potential and assuming the pres-

ence ol lundamental oscillation.
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1. Introduction

The forced Duffing equation'

describing a
motion of classical particle with damping in
an anharmonic potential, V(x)=(ax'—2§x")

/4(a>>0), under periodic external force,
) T*Faxafﬁx=Ecova, (1)

has been well investigated, since it shows var-
lous interesting phenomena associated with
a nonlinearity of the potential despite of
its simple structure®:®*:%%'_ Novak and
Frehlich suggested a mechanism of period-dou-
bling to lie in a parametric excitation of sub-
harmonics, and compared their theory with ex-
periment® . The agreement was satisfactory.
Sato, Sano and Sawada confirmed a scaling
property in a global bifurcation set®’ . In
both cases, #<0 or # =0, that is, the po-

tential is single minimum. In such a case,

Duffing equation, Double minimum potential, Bifurcation point

aperiodic phenomena appear for sufficiently
intense external force associated with the
nonlinearity of the potential proportional to
x*. The bifurcation phenomena reported since
now have been for such case.

On the other hand, if § >0, the potential
15 double minimum. Characteristic features
of the motion for the double minimum poten-
tial should appear when the particle motion
almost confined in one side well under weak
external force transforms into that extending
over two wells with the increase of the ex-
ternal force. In other words, they should ap-
pear when the energy of the particle measured
from the bottom of the potential is smaller
than or is comparable with the depth of the
potential well. But the investigations on such
standpoint have not been seen to the author's
knowledge.

The purpose of this article is to investi-
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gate the characteristic features of the motion
reflecting the “double minimum” potential.
The results of numerical calculations show
that the bifurcation scheme is sensitive to
a parameter describing the potential and to a
frequency of the external force. But we re
port only the outline of the scheme and do
not enter into the details of them. We focus
our attention to estimate the critical exter-
nal forces at which the bifurcation arises.
In the next section, the numerical results
are mentioned in detail. In section 3 elemen-
tary derivations will be tried of three crit-
ical external forces at which each bifurcation
arises using appropriate approximations. The
last section is devoted to summary and con-

cluding remarks.

2. Numerical Results

In eq.(1) we choose large damping constant,
k=1, "since complicated regions exist if k is
smaller than 0.6 as shown in Fig. 3 of ref. 6.
The parameter, &, decides a curvature of the
potential proportional to x', and is not so
essential. We take ¢=2. Equation (1) is an-
alyzed through second order Runge-Kutta
method. The initial conditicn does not affect
the behavior of the stationary solution, since
eq.(1) contains large damping term. In the
following it is taken as x(0)=2 and x(0)=1.
To exclude the initial transient part from
the solution, the data within 2 % 10* steps
are omitted. The behaviors of the solution
largely depend on two parameters, 4 and v.
We fix f=1.2 and take v as a parameter.
Hereafter we use E as a strength of the ex-
ternal force.

Typical patterns of the orbits are given
in Fig.1 for v =1. For small E, simple fun-

damental oscillation mode is seen in Fig.1

Fig.1. Typical patterns of the orbits when v
=1. E is taken to be 0,53, 0.58, 0.64 and 0.
78 for (a), (b), (c) and (d), respectively.

(a), but the period-doubling takes plae for E
=0.58(Fig.1(b)). In both cases the motion
1s seen to be confined in one side of two
wells. For E=0.64(Fig.1{(¢)) the motion
extends over two wells and is chaotic. Fig.1
(d) shows the orbit in window region, E=
0.78. To see the E-dependence of the solution
in detail, we observe the points at which the
orbit passes through the x-axis, that is, the
points satisfying x(t)=0. The results for
v=0.8, 1.0, 1.2 and 1.4 are represented in
Figs. 2 and 3. We investigate the region of
v ranging from 0.1 to 2.2. For »<0.3 bifur-
cation phenomena can not be observed, and

Ak =
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Fig.2.
tion with double minimum potential. The
point at which the orbit passes through the
x-axis 15 plotted against B when v=0.8 and
1 in (a) and (b).

Bifurcation digram of Duffing equa-

we do not discuss this region. In any cases
simple periodic orbit (fundamental oscillation
mode) exists for E=0.5, and is seen to be
confined in one side of the two wells. Increase
of E induces the bifurcation of the orbit, the
manner of which depends on v. For v<{0.8 the
chaotic orbit appears suddenly as shown in
Fig.2(a). For v >0.9 the period-doubling
takes place in the first place as shown 1in
Figs.2(b) and 3. Accumulation of the peri-
od-doubling can not be observed. We call the
value of I as E, at which the simple orbit
bifurcates at first. E, is 0.5589 when v=1.
After a finite sequence of period-doubling, the

solution becomes chaotic for » >0.9. The mo-

Fig.3. Bifurcation diagram of Duffing equa-
tion. The points at which the orbit passes
through the x-axis are plotted against 5 when
»=1.2 and 1.4 in (a) and (b), respectively.

tion is still confined in one side of the po-
tential wells for E<E,. More increase of E
from E, makes the motion extend over two
wells at E=E, which is 0.6307 for y=1. When
v<_0.8, chaotic region and window region ap-
pear successively. After that two chaotic
bands generate, and they transform again into
simple orbit of fundamental oscillation (Fig.
2(a)) as E increases from E;. While for v>
0.9, two chaotic bands transform into simple
periodic orbit accompanying the inverse proc-
ess of period-doubling after appearences of
one or two chaotic and window regions as
shown in Fig.2(b) and 3. We call the value

of E as E; at which the bifurcation ceases
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and fundamental oscillation gains its stabil-
ity again. Es is 1.162 for » =1. Three char-
acteristic values, B;, E; and E; are indi-
cated in Fig.2(h).

The region in E—v plane where bifurca-
tion occurs 1s represented in Fig.4 by cross
hatch-ed region. The lowest limits of E and
v are 0.55 and 0.3, respectively. The fact

that the region of bifurcation is restricted
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Fig.4. The region of bifurcation in E—v plane.
The cross hatched region is this. Solid cir-
cles show the theoretically estimated values
of E;.

in a finite range of E for fixed », is char-
acteristic point that distinguishes the bifur-
cation phenomena observed here from those
of global bifurcation set reported since now
on Duffing equation. Above fact clearly
shows that the bifurcation of the solution
originates from the motion feeling the non-
linearity of the double minimum potential.

Typical example of the Poincaré map is
given in Fig.b in chaotic region of v =1 at
E=0.64 and 0.84. It is constructed as fol-
lows: let x, be the peint satisfying =(t)=0
first, and x4 be such point next time.. We ob-
tain x;, Xz, - successivly, and plot them in
(xn, xn+;)-plane. Clear one dimensional map
18 obtained, however we do not discuss the
details of them here. For E2>»1, well known
folding of the orbit and the global bifurca-
tion set are observed.
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Fig.5. Poincare maps for E=0.64((a)) and
0.84((b)) when v=1.
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3. Estimation of E,, E, and E;
3-1 Estimaion of E, and E,

The potential, V(x)={(ax*—28x%)/4, has
depth of -§%/4a at x,==1/8/a¢. When the
external force 1s weak enough, the particle
1s considered to be localized near the bottom
of one side potential well. Thus letting x(t)
=xq,+E&(L),

(1), we obtain,

E(t)| €1, and linearizing eq.

2
de

o k—j? +2pE=Ecosut. (2)

Here V(x) is approximated to be harmonic
as V(&)=-—p%4a+ pé*. Equation (2) can be
solved elementary. The stationary solution
is given as,

25 1

= W —a)®

+{y —w)cos(2w—v)t)

{%sin(?m =yt

28 ¥ 3. K s
L k?+4(y +@)? { g Sk
+(y +w)cosytl, (3)

where w:WB. Using £(t) of eq.(3),
we calculate the average kinetic and potential
energies of the particle moving in harmonic
potential, K and U. Since the mass and the
force constant of the approximated potential
are 1 and 28, respectively, K and U are es-
timated as follows:

2

e Lpgs, B v?
K=< 252>74m2{ K +4(v+w)?
(2w —v)?

T4 —w)? h 4

e L _PE. 1
U—< ZEﬂxz> 20)2{ k2+4(v+0))2

-z eemul ®)

Here <--=+>> denotes the average over a time

of common multiple of 2z/v and 2z/|2w—v|.
Let us discuss the relation between K, U and
the depth of the potential well, D= g*/4a.
If the total energy of the particle, K+ U, is
much smaller than D, the particle would be-
have harmonically near the bottom of the po-
tential. But K and U increases with E.
When K+ U=D, the particle should feel the
nonlinearity of the potential. Thus if a con-
dition for period-doubling exists, it should
appear at E; satisfying K+ U=D. The con-
dition, K=D, will be reached with the more
increase of E. What happens in this case ?
The particle motion will extend over two
wells, since the kinetic energy prevails the
potential barrier between two wells. Accord-
ingly the condition, K=D should give E,.

The estimated values of E; and E, are com-
pared with those obtained numerically in Fig.
6. Above estimations can not at all be ap-
plied for v<_1, while they give rough agree-
ment with data for v >1. The exact coinci-
dences of E; at v=1.2 and of E; at v=1.4
are of course accidental. The relative error
is within 20% between »=1.1 and 2.3, for
example, when v =1.8, estimated values of
E; and E, are 0.760 and 1.279, while the nu-
merically obtained values are 0.901 and 1.146,
respectively. The relative errors are 8 %
and 10% . Considering the method of estima-
tion to be very elementary, the agreement is
satisfactory  The difficulty lies in the

failure of the estimation for »<{1

3-2 Estimation of E,

The bifurcation observed in this study may
cease when the motion extends over a wide
region with the increase of E, and the parti-
cle can not already feel that the potential
is double minimum. In such & case the har-
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Fig.6. Comparison ol estimated values of B,
and H, with numerically obtained values.
Solid and open circles show E, obtained nu-
merically and theoretically, respectivly. Sim-
ilarly solid and open triangles represent E;
obtained theoretically and numerically,

monic potential approximation done in the pre-
ceeding paragraph breaks down, and we must
treat eq.(1) directly. According to the treat-
ment described in usual textbook! , we assume
a fundamental oscillation solution to eq.(1)
as x(t)=acosvt+ bsinvt. Substituting it into
eq.(1) and equating the terms of cosvt and

sinvt, we obtain the following relation:
(w2 +(Bar? - g—v?))r* = B2, (6)

where r? = a® + b*. If the amplitude, r be
larger than the width of the potential well,

m, the particle can not already feel
the potential to bedouble minimum. Thus we ob-
tain [y from eq. (6) by letting r= v27 " «,
that 1s,

Bs={kvi+ (5/2- v}V 2 (2p/d) V2, <)

Estimated value of E; is represented in Fig.
4. It fairly reproduces the numerical data in
the region of v=1.8, however the discrepancy
becomes remarkable for ¥>>1.8. The reason is

not clear yet.

4., Summary and Concluding Remarks

The bifurcation phenomena of Duffing equa-
tion have been reported by many authors, how-
ever they are concerned with the nonlinearity
of the potential proportional to x*, and they
are observed at sufficiently intense external
force. When the potential is double minimum,
the nonlinearity should appear at weak encugh
external force, since the transformation of
the solution exist from that confined within
one side of the two wells to that extending
over two wells. It is confirmed numerically
that the bifurcation takes place even at suf-
ficiently weak external force, where in usual
analyses fundamental oscillation mode is as-
sumed. The bifurcation ceases when the ampli-
tude becomes larger than the width of the po-
tential well and the motion can not feel the
double minimum nature of the potential.

Accordingly the behaviours of the bifurca-
tion have different properties from those re-
ported since now. The first peculiar point is
that the bifurcation is sensitive to v. The
particle moves in nearly harmonic potential
under weak external force, thus the frequency
intrinsic to the system exists, from which
it is reasonable that the bifurcation depends

on v. Contrary to the case of this study, the
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manner of bifurecations reported since now
does not depend on v essentially, since such
intrinsic frequency does not exist. Secondly
the region where the bifurcations are observ-
ed, is restricted in a finite range of the exter-
nal force The bifurcation phenomena report-
ed since now can generate in an infinite range
of the external force, because they are related
to the nonlinearity of the potential propor-
tional to x*. On the other oand, the bifur
cations observed in this study are concerned
with the nonlinearity that the potential is
double minimum.

We succeeded in roughly estimating the char-
acteristic external forces, E,, E, and E; at
which the first bifurcation occurs, the chaotic
motion extends over two potential wells and
the bifurcation ceases, respectively. E; and
E; are determined by comparing the depth of
the potential well with the particle energy
calculated from harmonic approximation of
the double minimum potential. E; 1s decided
by equating the width of the potential well
to the amplitude of the motion i1n fundamen-
tal oscillation mode. To our regret, the agree
ments with numerical data are unsatisfactory
in the region of »<(1 concerning E, and E.
and in the region of v>>1.8 for Ej. Although
some corrections, such as renormalization of
the frequency, seems to be neccessary in the
above region, the estimation gives satisfacto-
ry result near v=1. To the best of our knowl-
edge, this is the first trial to obtain the
characteristic external forces at which the
bifurcation starts or ceases, in double min-

imurn potential.
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