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Frequency Shift of Self-Sustained Oscillation by External
Force in Forced van der Pol Oscillator

MORIMOTO Yasuo
Department of Physics, Meiji College of Oriental Medicine

Summary: The arbital portrait of guasi-periodic oscillation (QP) generating in forced
van der Pol oscillator changes by external force, as il a kind of frequency pulling eflect
takes place, which has been revealed by numerical analyses. QP consists of sell-sustain-
ed and external force components. If the former frequency does not change by the latter,
the portrait should not change remarkably. But traditional stationary solution analyses
have not predicted such frequency change. This [requency change is calculated to the first
order in the external force strength by extending the traditional theory. Thus the change
of portraits can be explained by the frequency pulling effect among the two components
of @P induced by this frequency change, and the transition points of QP portraits are

roughly estimated.
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1. Introduction

When periodic external force 1s applied to
self-sustained oscillator system, various kinds
of oscillation modes are generated?. As an
example, let us consider forced van der Pol
oscillator of the form,

d?x dx

—— — oyl
ae il X)dt

+wo?x=Ecosyt. (1)

When E=0, the self-sustained oscillation( 50
hereafter), x(t)= 2cos(wt+#) is generated
for #>>0, where @=w(1—#*/16) and 6 de-
pends on the imtial conditions. The RHS
shows the periodic external force. The set of
parameters, E and v, decides the oscillation
modes, and thus constitutes a phase diagram.
For simplicity the case of w,=1 and x=1 1s
taken in the following without loss of gen-

erality. The phase diagram is represented in

Quasi-Periodic Oscillation,

Fig. 1. For E>E;(=v 2v({(1-vE)/v}? +
1/4)V2121 ) the oscillation mode is synchro-
nmzed to the external force, and the fundamen-
tal oscillation (FO hereafter) takes place.
The region where the FO appears is designal-
ed as “FO" in Fig. 1. Typical orbital por-
trait ( portrait hereafter ) described in the
phase space, (x(t), x(t))—plane is represent-
ed in IMig. 2(¢c) for E=7.7 and v=2.5. The
FO is shown to be nearly harmonic. On the
other hand for E<Ej;, two possibilities are
present, one 1s the case, when the relation,
v=nw,(n=1, 2, 3 - or 1/2, 1/3, -+ ) is
satisfied. In this case harmonic oscillation
(HO herealter) is generaled, and the region is
shown as “HO” in Fig. 1. Typical portrait
is given in Fig. 2(a) when E=10.0 and »=3.
It usually takes a form of simply closed curve.

The other is the case, when above relation is
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Fig. 1. The phase diagram of oscillation modes
in forced van der Pol oscillator. “n” HO in-
dicates n—(sub) harmonic oscillation mode.

not satisfied, and quasi-periodic oscillation

(QP hereafter) consisting of SO and exter-
nal force components appears. Such region is
designated as “QP” in Fig. 1, and the exam-
ple of portrait is shown in Fig. 2(b) when E
=4.0 and v=2.33. Usually the orbital points
wander around in the limited region of phase
space.

The portrait of FO does not show remark-
able change even though E varies, because the
frequency is completely synchronized to the
external force, and E only affects its ampli-
tude slightly. The HO consists of two com-
-ponents, one the SO and the other the exter-
nal force as similarly as QP. However the
frequency of SO is synchronized to that of
external force due to the relation, v= ne,
(frequency pulling effect ), and can not be
affected by E. Thus the portraitof HO 1is
little influenced by E as similarly as the

Fig. 2. The typical examples of orbital por-
traits for HO, QP and FO when (a)—v¢ =3, E
=10.0, (b)—v=2.33, E=4.0 and (c)—v=2.5, E
=7.7, respectively. The scale i1s represented
in (a), and is common.

case of FO. On the contrary to above two
cases, the portrait of QP is largely influ-
enced by E, as if a kind of transition takes
place, which has been revealed recently through
the numerical analyses by the author?’. The
examples are given in Fig. 3 which shows the
variations of portraits with E when v is fixed
to be 2.5. The details will be mentioned in
the next section. The transition is very re-
markable between the wandering type and sim-
ply closed type. The frequency pulling effect
between two components of QP is necessary

for such transition to take place. The frequen-
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Fig. 3. The variations of portraits with E when
py=2.5. The parameters are (a)E=1.5 (b) E
=2.8, (c) E=3.4, (d) E=7.05 and (e) E=7.62.
The scale aer same as those of Fig.2.

cy of SO should change by E, since that of
the external force is fixed. But in the tra-
ditional stationary solution analyses, such fre-
quency change of SO by E has not been taken
into account, and region of QP has been re
garded as a uniform region. But such a point
of view can not explain the observed changes
of QP portrairs.

We try in this article to take inlo account
of the effect of E in first order on the fre-
quency shift of SO, which has the possibility
to induce the frequency pulling effect on the
QP. Such effect might explain the observed

transitions of QP portraits by E. As a re
sult, the transition points are roughly esti-
mated, although the quantitative agreements
are poor. In the next section the changes of
QP portraits with [l are illustrated in detail.
The aim of this article is to explain them.
Simultaneously the frequency pulling effect
in the model QP system® will be discussed,
which 1s necessary to explain the changes of
QP portraits. In section 3, the traditional
theory are reviewed, and the central idea will
be introduced concerning the frequency shift
of SO by K. It is some extention of tradi-
tional theory. The last setion is devoted to

the concluding remarks.

2. The Changes of QP Portraits by E and
Frequency Pulling Effect in Model QP
System

The changes of QP portraits by E are shown

in Fig. 3 for the case of v=2.5(xz=1 and @,
=1) in eq.(1), which is obtained numerically
through second order Runge-Kutta method?’.
When E<E;(=1.702), the portrait takes the
form of Fig. 3(a) which consists of SO weak-
ly modulated in its amplitude by the external
forcs, and has been succesfully explained®’.
When E exceeds Ki, the portrait suddenly
changes its form as given in Fig. 3(b) which
1s wandering type mentiond before. This is
certainly the portrait of QP. But when E
reaches E,(=3.261), it suddenly changes its
form into that given in Fig. 3(c¢), as if a
kind of transition takes place into the HO,
that is, the simply closed type. Above fact
says that some kind of synchronous state i1s
attained in the two components of QP. This
portrait continues up to E=E,'(=7.047). For
E,<BE<E, the frequency pulling effect seems
to be realized between the SO and the exter-
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nal force components. Such change has not
been predicted in the traditional theory. Far
E>>E," the frequency pulling effect breaks
down, and the portrait changes again into the
wandering type as shown in Fig. 3(d). This
portrait transforms at E=E,"(=7.601) in-
to the form given in Fig. 3(e) which finally
changes continuously into that of FO at E=
E4(=7.660). The portrait between E; and
E;(Fig. 3(e)) can be interpreted as the FO
weakly modulated in its amplitude by the SO
similarly as that below E,. For EZ>E; the
FO is realized, and the portrait has already
been given in Fig. 2(c).

The region of interest is E;<CE<E;". In
the traditional theory this region is analyzed
by assuming x(t)=acos(yt+8)+ becos(wt +¢)
and w=1- #®/16, after which the stability
of this solution is investigated. This stabil-
ity analysis decides the region of QP in the
phase diagram. Of course the first term 1is
forced component, and the second the SO-cam-
ponent. @ 1is assumed to be constant not de
pending on E. Only the amplitudes, a and
b, depend on E slightly. Thus the portrait
should not be changed remarkably by . But
the numerical results indicale that above as-
sumption breaks down, that is, @ should de
pend on E. If so, the frequency pulling be-
tween two components of QP may be possi-
ble, when the condition, y=nw(n=1, 2, 3--
---) is brought by E. This effect can change
the portrait of QP drastically as observed
numerically in Fig. 3. In the cases of FO
and HO, the frequency pulling effect can not
affect the portrait, because the effect has
already been included.

Next let us see the frequency pulling effect
in model QP system, x(t)=ricoswit+ r;cos-

w ,t* . Without loss of generality the param-

eters are taken as ri=1, r,=1.5 and w;=1,
and the portrait is investigated as a function
of @, As is expected the frequency pulling
effect is obslrved, when the relation, nw,=
me {w;=1 and n, m are integer), is satisfi-
ed. When just nw,=mw ,, and n, m are simple
integers such as 1, 2, 3, the portrait is sim-
ply closed curve, which is of course reasonable.
But when ne,7#mw,;, but |nw,—mae,|=0.1,
new type oscilatory behaviour appears. It is
n- or m-folded periodic oscillation of the
point passing through the x-axis of phase
space, (x, ;c)-_p]ane, that 1s the point satis-
fying ).c(t)=0. For the details see ref.(4).
It should be minded that the portrait itself
1s not simply closed curve type, although the
frequency pulling effect seems to be induced.
The regions of w./@,, where such frequency
pulling effect occurs, are represented in Fig.4
by thick bars. When n/m is simple rational
number such as 1, 2, 3 or 1/2, 1/3, the re-
gion 1s wide(=0.2 in width of w,). On the
other hand it is narrow(=0.1), when n/m is
not so simple such as 3/4, 7/5 or 5/8. When
the ratio, n/m is nearby irrational number
such as 1V 2=1.4142 or v/ 3=1.732, the ef-
fect can hardly be observed. Two examples
are showh by A and B in Fig. 4. To be in-
teresting is that the Fig. 4 resembles to the
“Devil’s Staircase” appearing in the Can-

tor set® .

3. Review of Traditional Theory and the
Frequency Shift

At first let us review the case of E=0 for

later references. Since u 1s usually utilized

as a smallness parameter, we recover the vari-

able, # from g=1. Then the solution, x(t)

of eq.(1) is expanded as, x(t)=x,(t)+ ax,(t)

+u?x,(t) + - +--. Simultaneously. the fre-
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Fig. 4. The ranges of frequency pulling effect in model QP system. Dotted line shows

m/n=w 3/w;, and the thick bars indicates the regions of frequency pulling effect.

quency must be scaled so as to exclude the
unphysical secular terms from the sclution,
so we let t=wt, and expand @ as @=1+pw;
------ . The initial conditions are taken
as follows for convenience: x,(0)=A(a con-
stant to be determined later), %,(0)=0
(0)=0 and x(0)=0, i=1, 2, 3.
by xi(t) and t
same order of g, the following solution is ob-

xi
Rewrit-

ing eq.(1) and compaing the

tained by recovering the original variables,

x()=(2— 1 /8)coswt+ (3w/d)sinwt
+ (3% /16)cos3wt— (/4)sin3wt
—(54% /96 )cosbw t+--, 2)
and

w=1-4"/16.

Here @i's and the arbitrary constants appear-
ing when the equations of any orders of # are
integrated, are determined so as to eliminate
the secular(divergeni) terms. The frequency,
® 1s shown to decrease as the components of
higher harmonics increases, that is, as g in-
creases, which can be shown generally by the
following method®’. Multiplying x{t) to eq.
(1), and integrating (or averaging) over a pe-
riod, T(
LHS,

Tf dt2
,-f (

=2x/w) gives for the first term of

dx
Tdtu

>dt‘——f<

) dt.

because of its periodicity, x(0)=x(T) and x
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(0)=%(T). The partial integration is used

once. The second term vanishes because,

T
%f x(1—x%)
0

:l(xz/Q_ 1/4) i
ke i

dx
at dt

0.

Finally following relation appears,

L e de 2 1T
7TIG<T) L ?f,,, B
-0 )

Let us define the Fourier transform of x(t)

as,

x(t) = i apcos(neot+a,), w=2z/T, (5]

n=1

and substitute this into eq.(4). Then we ob-
tain,

EN
Il
ME

lan‘"/ Z.'lnzanz(éi). (6)

If no harmonic component is present, that is,
a,=0 for n=2, 3, 4----- , @=1 as 1s expect-
ed, that 1s, no frequency shift. Eq.(6) clear-
ly indicates that the inclusion of higher
harmonies induces the decrease in its frequen-
cy. From eq.(2) a,? =(2— 4 /8)* +(3u/4)* =4
+42/16 and a3 =(34%/16)% + (w/'4) =4 /16
are obtained to the order of p°. If the terms
up to n=3 are taken into account, eq.(6)

gives for @ using a, and as,

w={(4+24*/16)/(4+104°/16)}'" *
=1—4*/16,

which agrees with eq.(3), the result of reduc-

tive perturbation method. Above treatment is
cited in the textbook®' . In the following this
method 1s extended to the case of E#0 to ob-
tain the E-dependence of @. The similar pro-
cedure mentioned above for RHS of eq (1)
gives,

E =
_Eanx

E T
Tfux(t)cosutdtf T =,

T
fﬂ [cos{nw+u)t+czn}

+cos{ (nw +u)t.+a:n}] dt
E =

2a
2T n_:—l “ new +

{sin{(ne +v)T
y

+ dtp} — sina,} + . %

@~V

{sin{(nm*y)'l‘ﬂfctn}—sino:,.}] (7)

Here let us take into account only of the dom-
inant term which comes from the n*-th term
satisfying n*@ —v=0. Then eq.(7) is simply

approximated as, by letting 6=n*w—v,
(E/2T8) an#(sin(8 T+ @n*) — sindq+} .

Assuming 6T, {----
5Tcosa,*. Eventually eq.(7) is reduced as (E

} is approximated as

/Damcosdsk. Thus eq.(4) for E#0 is modifi-

ed as

—w? 2 nfa?+ 2 ant=a +Ecosd,x,
n=1 n=1

or

= o . S
w?=( 2 a,?—ay+Ecosa,#)/ X n'a.’.
n=1 n=1

(8

This result gives the desired first order fre-
quency shift by E, and is the main result of
this article. Let us apply this result to the
present problem. Since the unperturbed fre-
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quency is about 1—p2/16(x=1)=10.9375, n
satisfying n(1—*/16)—v =00y =2.5) 1s 2.67.
Thus n*, the integer closest to above n(=
2.67) is decided to be 3. Then from eq.(2),

costyx=cost = (3u* /16){(3u? /16)*
+u? /16t #=0.688,

is obtained. Substituting this into eq.(8) and
including up to the terms of n=3, the fol-

lowing relation is obtained,
w==0.935—0.018E. (9

This 1s the final result. Since the value of E
in problem is ranged from 3 to 7, the central
value of @ is about 0.85. Thus the value of
n satisfying ne=v(v=2.5) is 3. The coin-
cidence of this value with n* is accidental.
As is clear from Fig.4 the range of w,/w, is
between 2.9 and 3.1, where the frequency pull-
ing effect takes place for w,=3w,. Thus the
effect should be realized in the region of E
satisfying v/w=2.9 and 3.1, which gives two
critical values of E, one 4.05, and the other
7.14. The frequency pulling effect takes place
for 4.06<CE<(7.14, where the portrait can be
simply closed curve as if it were HO. It fails
for E<4.05 and E>T7.14, where the portrait
has the form of wandering type. Comparing
above results with the numerical results of
Fig.3, E=4.05 and 7.14 can be considered to
correspond to E,(=3.26) and E,"(=7.05),
respectively. The relative errors are 24 %
and 1% for E; and E,', respectively, which
would largely depend on the accuracy of the
frequency pulling range such as 2.9 or 3.1.
Although the quantitalve agreement is poor,
we should be satisfied considering the approx-
imation to be the lowest order.

Thus we can explain the changes of QP
portraits by the frequency pulling effect be-
tween the SO and the external force compo-
nents, originating from the frequency shift of
50 induced by the external force. This 1s the
first assertion of frequency shift of SO by

E as far as the author knows.

4. Concluding Remarks

For the QP generating in the forced van
der Pol oscillator under weak external peri-
odic force, the traditional theory predicts the
ratio of SO-component to the external force
to change by E, however it does not say the
frequency change of SO by E. Thus the por-
trait of QP is expected to show little change
by E. But the numerical analyses have re-
vealed remarkble changes of QP portraits by
E. Especially the portrait shows transition
like behaviour, when it transforms from wan-
dering type portrait to simply closed curve
type with BE. At those transition like points
the interesting phenomena such as the meta-
stable oscillation modes?' have been report-
ed. Such transformation of QP portraits can
not be explained from the variation of am-
plitude ratio between the SO and the exter-
nal force, but should originate from the fre-
quency change of SO with E, because it has
the possibility to induce the frequency pull-
ing effect among the two components of QP.
Such frequency shift has not been predicted
by the traditional theory. To obtain the fre-
quency shift of SO by E, eq.(1) or its mod-
ified equation is integrated(or averaged) over
a period to investigate its DC-componont by
substituting the Fourler series expansion of
x(t) with multiples of basic frequency. Di-
rect substitution of Fourier series into eq.

(1) gives only trivial relation, because eq.(1)
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is periodic and does not give the DC-compo-
nent. Usually energy integral is ohtained by
multiplying dx(t)/dt to eq.(1). The system is
periodc and 1s not conservative, and thus the
energy integral does not give any meaningful
relations as in the case of conservative sys-
tem. So x(t) i1s multiplied to eg.(1), and the
averaged equation is constructed, which gives
meaningful result. Only the dominant term is
taken into account for the external force term.
The coefficients of Fourier series when no
external force is present are utilized approx-
imately. As a result, the frequency shift is
estimated to the first order in the external
force, and the transition points between wan-
dering type and simply closed type portraits
can be roughly estimated by comparing the
frequency pulling effect in model QP systems
with the estimated frequency shifts.

The problem left is the content of frequency
pulling effect. In the frequency pulling range
of model QP system, 2.9<w./®,< 3.0, the
portrait takes a form of simply closed curve
only when w,/@;=3, but does not when w ,/
@;73. Instead of it, the time evolution of
the point, x(t) satisfying x(t)=0, shows the
periodic motion, in which case the portrait is
not always the simply closed curve. Thus the
question is now left, whether the frequeney
pulling effect can induce the observed transi-
tion between wandering type and simply closed
curve type portraits, or not. But we should
be satisfied at this stage with the fact that
the possibility of frequency shift of SO 1s
confirmed, which can cause the transition of
QP portraits, and that the transition like

points are roughly estimated.
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